Using Genetic Algorithms and SWAT to Minimize Sediment Yield From an Agriculturally Dominated Watershed
نویسندگان
چکیده
Non-point source pollution is well recognized as one of the most critical environmental hazards of modern times. In Illinois, non-point source pollution is the major cause of water quality problems, and soil erosion from agricultural lands is the major source of such pollution. Accelerated by anthropogenic activities, soil erosion reduces crop productivity and leads to subsequent problems from deposition on farmlands and in water bodies. Watershed management, however, promotes protection and restoration of these natural resources while allowing for sustainable economic growth and development. In this study a discrete time optimal control methodology and computational model are developed for determining land use and management alternatives that minimize sediment yield from agriculturally dominated watersheds. The methodology is based on an interface between a genetic algorithm and a U.S. Department of Agriculture watershed model known as Soil and Water Assessment Tool (SWAT). The original structure of the SWAT model is preserved and modifications are embedded for computational efficiency. The analysis is based on a farm field level to capture the perspectives of different stakeholders. The model thus supports Illinois EPA’s plan of developing a program based on enabling and empowering local stakeholders to take charge of the fate of their watershed. Management alternatives available for all land uses modeled by SWAT are developed considering rotation patterns of three years. The decision support tool is applied to Big Creek sub-watershed in the Cache River watershed, located in Southern Illinois. Big Creek subwatershed has been sighted by the Illinois EPA for excessive sediment and nutrient loadings and has been targeted by the Illinois Pilot Watershed Program. This research is part of an ongoing effort to develop a comprehensive decision support tool that uses multi-criteria evaluation to address social, economic and hydrologic issues for integrative watershed management.
منابع مشابه
Watershed Management Technique to Control Sediment Yield in Agriculturally Dominated Areas
Non-point source pollution is recognized internationally as a critical environmental problem. In Illinois, soil erosion from agricultural lands is the major source of such pollution. The erosion process, which has been accelerated by human activity, tends to reduce crop productivity and leads to subsequent problems from deposition on farmlands and in water bodies. Comprehensive water shed mana...
متن کاملField_SWAT: A tool for mapping SWAT output to field boundaries
The Soil and Water Assessment Tool (SWAT) hydrological/water quality model divides a watershed into hydrological response units (HRUs) based on unique land cover, soil type, and slope. HRUs are a set of discontinuous land masses that are spatially located in the watershed but their responses are not tied to any particular field. Field_SWAT, a simple graphical user interface (GUI)-driven tool, w...
متن کاملApplication of Automated Geospatial Watershed Assessment (AGWA) Tool to Evaluate the Sediment Yield in a Semi-arid Region: Case Study, Kufranja Basin-Jordan
Prediction of sediment yield from catchments is essential in the investigation of reservoir sedimentation and other hydrological and geological studies. Many methods have been used in the prediction of sediment yield. Soil and Water Assessment Tool (SWAT) is a newly developed model that can be applied to rural watershed. SWAT model has used Modified Universal Soil Loss Equation (MUSLE) in sedim...
متن کاملSensitivity of a Distributed Watershed Simulation Model to Spatial Scale
The results of distributed watershed models could be sensitive to spatial and temporal scales at which inputs and model parameters are aggregated. This paper reports findings of a detailed sensitivity analysis conducted on the U.S. Department of Agriculture’s distributed watershed simulation model, known as the Soil and Water Assessment Tool (SWAT). The Big Creek Watershed, located in southern ...
متن کاملWater Quality Modeling for the Raccoon River Watershed Using SWAT
The Raccoon River Watershed (RRW) in West-Central Iowa has been recognized as exporting some of the highest nitrate-nitrogen loadings in the United States and is a major source of sediment and other nutrient loadings. An integrated modeling framework has been constructed for the RRW that consists of the Soil and Water Assessment Tool (SWAT) model, the interactive SWAT (i_SWAT) software package,...
متن کامل